81 research outputs found

    Micromanipulation and Micro-Assembly Systems.

    No full text
    International audienceThe needs to manipulate micrometer sized objects keeps growing and concerns numerous and various fields like microsystems (MEMS1 and MOEMS2), micromechanics, optics, biology or pharmacy. The specificities of size, material, geometry and consistency of manipulated micro-objects, their surrounding, the kind of task to perform and the free size are all the more specific parameters that strongly influence the design and working of micromanipulation and micro-assembly systems. These systems are widely developing because they correspond both to industrial needs and really challenging scientific problematics. For these reasons, the present paper aimed at dealing with a review that mainly focuses on systems recently developed to assemble small series of microcomponents. The paper especially points out different solutions of carriers structures, gripping principles, sensors, other peri-microrobotic systems and control systems presenting the main solution and justifying their use and interest

    Microrobotique et Micromécatronique pour la Réalisation de Tâches de Micro-Assemblage Complexes et Précises.

    Get PDF
    Ce document présente une synthèse de mes contributions scientifiques aux domaines de la microrobotique et de la micromécatronique ainsi que des transferts effectués, tant à destination de l’industrie que de l’enseignement. Les travaux conduits sont orientés vers la réalisation de tâches de micro-assemblage complexes, précises et automatisées par approche microrobotique et sont plus particulièrement appliqués aux MOEMS.L’échelle micrométrique considérée induit de nombreuses spécificités qui se traduisent par un déficit notable de connaissances du comportement des systèmes à cette échelle. Pour cela, une première partie des travaux est dédiée à l’étude et à la modélisation multiphysique des systèmes microrobotiques et micromécatroniques. Cette connaissance a conduit, dans une seconde partie des travaux, à la proposition de nouveaux principes de mesure et d’actionnement mais également au développement de microsystèmes complexes, instrumentés et intégrés (micro-banc-optique, micropince, plateformes compliantes). Enfin, des lois de commandes et des stratégies d’assemblage originales ont été proposées notamment une commande dynamique hybride force-position combinant une commande hybride externe et une commande en impédance. Celle-ci permet de maîtriser la dynamique des transitions contact/non-contact critique à l’échelle micrométrique mais également d’automatiser des processus de micro-assemblage complexes. L’ensemble de ces travaux ont fait l’objet de validations expérimentales permettant de quantifier précisément les performances obtenues (exactitude de positionnement, temps de cycle, robustesse…). Les perspectives de ces travaux portent sur la proposition de systèmes microrobotiques et micromécatroniques compacts et intégrés utiles au micro-assemblage haute dynamique ainsi qu’à l’assemblage de composants nanophotoniques

    Flexible micro-assembly system equiped with an automated tool changer.

    No full text
    International audienceThis paper deals with the design, fabrication and experimental validation of several modules of a micro-assembly system. On one hand, a microgripper is integrated in a four degrees of freedom system. On the other hand, a tool changer is designed. It enables to exchange automatically the tip part of the microgripper and then dedicated tools can be used to achieve specific tasks. The principle of this tool changer relies on a thermal glue whose phase (liquid or solid) is controlled by heat generators. This system is based on the modeling of thermal phenomena in the tools during a cycle of tool exchange. A compliant system is added to limit micromanipulation forces applied during assembly tasks like insertions. Finally, the successful assembly of several microcomponents is detailed, highlighting the capabilities and benefits of the whole system

    Temporary fixing systems for applications in Microrobotics.

    No full text
    International audienceThis paper focuses on temporary fixing systems for microrobotics. Several solutions from the art are presented and compared : solutions based on mechanical bending, electromagnetic elements, electrostatic forces, glues, polymers or Van der Waals forces. From this analysis, we designed and developed a new system based on thermal glue (that permits to exchange the tip part of a microgripper) for microassembly stations. This system brings a high flexibility and compactness for microrobotic applications

    Hysteresis and vibration compensation in a NonLinear Unimorph Piezocantilever.

    No full text
    International audienceDue to their rapidity and their high resolution, piezoelectric materials are very prized in microactuators and microrobotics. The classical example is the piezocantilevers. Notwithstanding, piezocantilevers present nonlinearities (hysteresis and creep) when the applied electric field becomes large. On the other hand, they present lightly damped vibration. Feedback control is a classical issue to eliminate this unwanted behavior but it involves the use of sensors. In micromanipulation and in microassembly, sensors still remain one of the problematic because of their sizes and difficulty of packaging. This paper presents the feedforward compensation of the hysteresis and the vibrations in piezocantilevers. While the Prandtl-Ishlinskii (PI) static hysteresis model is used to compute the hysteresis compensator, we employ the Input-Shaping method to reject the unwanted vibration. The experiments show that the accuracy can be highly increased while the setling time ameliorated and the vibration largely decreased

    Force Tracking Impedance Control with Unknown Environment at the Microscale.

    No full text
    International audienceA new method to estimate the environment parameters is proposed in order to perform force tracking in impedance control despite the presence of an unknown environment. In impedance force tracking, the location of the environment relative to the robot and the stiffness of the environment should be known. The proposed method estimates the environment location and stiffness using only force and position measurements. The study is done for microscale taking into consideration microscale specificities, especially pull-off force. The impedance control formulation is tested experimentally in a contact transition scenario consisting of a compliant microforce sensor mounted on a microrobotic positioner, and three compliant microstructures with different stiffness. A traditional double mass-spring-damper model of the overall robot is employed to develop the closed-loop impedance control

    Hybrid Force/Position control applied to automated guiding tasks at the Microscale.

    No full text
    International audienceForce feedback control constitutes a promising solution for achieving fully automated micro-assembly. In this paper, we report the study of force feedback control used during guiding task. An experimental setup with two sensorized fingers is proposed. It enables to grasp a micropart of 2 mm x 50 ÎĽm x 50 ÎĽm in size and to estimate the lateral contact force. A simulator is developed to take into account the gripping forces evolution during a lateral perturbation. External hybrid force/position control is chosen for performing automated guiding tasks. Experimental results demonstrate the ability of the implemented controller and suitable design of microsystems

    Hinf deflection control of a unimorph piezoelectric cantilever under thermal disturbance.

    No full text
    International audienceThe effect of the temperature variation on a unimorph piezoelectric cantilever is studied. Its influences on the thermal expansion, the piezoelectric constant, the transient part and the creep are experimentally analyzed. Afterwards, a Hinf controller is synthesized in order ot reject the thermal disturbance and to reach performances required in micromanipulation. Finally, the closed-loop experiments end the paper

    Modelling and Robust Position/Force Control of a Piezoelectric Microgripper.

    No full text
    International audienceThis paper deals with the control of a piezoelectric microgripper based on two piezocantilevers. To avoid the destruction of the manipulated micro-object and to permit a high accurate positioning, the microgripper is controlled on position and on force. Each piezocantilever is separately modelled and controlled : while the one is controlled on position, the second is controlled on force. Because the models are subjected to uncertainties and the micromanipulation requires good performances, a H robust controller is designed for each system. The experiments end the paper and show that good performances are obtained

    Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers.

    No full text
    International audienceThe feedforward compensation of nonlinearities, i.e. hysteresis and creep, and unwanted vibrations in micromanipulators is presented in this paper. The aim is to improve the general performances of piezocantilevers dedicated to micromanipulation/ microassembly tasks. While hysteresis is attenuated using the Prandtl-Ishlinskii inverse model, a new method is proposed to decrease the creep phenomenon. As no model inversion is used, the proposed method is simple and easy to implement. Finally, we employ an input shaping technique to reduce the vibration of the piezocantilevers. The experimental results show the efficiency of the feedforward techniques and their convenience to the micromanipulation/microassembly requirements
    • …
    corecore